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This article presents semi-analytical solutions for stress distributions in exponentially and
functionally graded rotating annular disks with arbitrary thickness variations. The disk is
under pressure on its boundary surfaces and exposed to temperature distribution varying
linearly across thickness. Material properties are supposed to be graded in the radial di-
rection of the disk and obeying to two different forms of distribution of volume fraction of
constituents. Different conditions at boundaries for stresses and displacement are discus-
sed. Accurate and efficient solutions for displacement and stresses in rotating annular disks
are determined using infinitesimal theory. Numerical results are carried out and discussed
for different cases. It can be deduced that the gradient of material properties and thick-
ness variation as well as the change of temperature sources have a specific effect in modern
applications.

Keywords: functionally graded, variable thickness, semi-analytical approach, rotating, ther-
mal effect

1. Introduction

Stress analyses of rotating circular disks have long been an important topic in engineering
applications. Disks made of homogeneous materials have been discussed extensively with con-
stant and thickness variation (Hartog, 1952). Cavallaro (1965) presented variable-thickness disks,
symmetrical with respect to both their axes and their mid-planes, under the effect of centrifu-
gal and thermal loadings. Wu and Ramsey (1966) presented solutions for stresses in rotating,
symmetrical, three-layer circular disks. Murthy and Sherbourne (1970) presented rotating aniso-
tropic variable-thickness disks under centrifugal loading. Yella Reddy and Srinath (1974) derived
closed-form solutions for the bending response of rotating variable-thickness and variable-density
disks. Sherbourne and Murthy (1974) presented a dynamic relaxation technique to study stresses
and displacements of rotating variable-thickness disks with different boundary conditions.

An extension to rotating solid and annular disks with variable profiles made of viscoelastic
materials has been investigated. Feng (1985) presented governing equations of rotating disks
subjected to large elastic and viscoelastic deformations. Allam et al. (2008) presented a circular
variable-thickness elastic disk under the effect of steady coaxial current and bearing coaxial
viscoelastic coating. Zenkour and Allam (2006) presented an analytical solution for displacement
and stresses in rotating fiber-reinforced viscoelastic variable-thickness disks. Allam et al. (2007)
presented analytical solutions for inhomogeneous rotating variable-thickness viscoelastic disks.
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Recently, the research on rotating circular disks has become more and more active after chan-
ging the material model, especially in the case of functionally graded materials (FGMs) (Argeso,
2012; Das et al., 2012; Hassani et al., 2012; Peng and Li, 2012a,b; Golmakani, 2013; Kadkho-
dayan and Golmakani, 2014; Zenkour, 2014; Dai and Dai, 2015; Leu and Chien, 2015; Sahni and
Sahni, 2015; Hosseini et al., 2016; Zhenga et al., 2016; Entezari et al., 2017; Essa and Argeso,
2017; Tutuncu and Temel, 2013). Allam and Zenkour (2005) presented viscoelastic rotating di-
sks of made of an exponentially graded (EG) varying thickness and fiber-reinforced viscoelastic
material. Zenkour (2005) obtained accurate elastic solutions for EG rotating annular disks with
different conditions. You et al. (2007) obtained closed-form solutions of FG rotating circular
disks under uniform angular velocity and uniform temperature change taking into consideration
that material properties were functions of the radial coordinate. Bayat et al. (2008), Asghari and
Ghafoori (2010) and Ghorbanpour Arani et al. (2010) used a semi-analytical method to present
elastic and magneto-thermo-elastic solutions for FG rotating disks with a variable profile. Vullo
and Vivio (2008) obtained elastic stresses and strains in rotating variable-thickness solid and
annular disks under thermal load with density variation along the radial coordinate. Bayat et
al. (2009a,b) used the first-order shear deformation theory to discuss elastic and thermoelastic
bending responses of rotating disks with graded material properties. Bayat et al. (2009c) derived
thermoelastic responses for axisymmetric FG rotating variable-thickness disks with temperature-
-dependent material properties. Zenkour (2009) presented two models of sandwich rotating solid
disks with the EG core with free or clamped-edge conditions. The finite difference, finite element
and semi-exact elastic solutions of thermoelastic analysis of FG rotating disks were presented
by Afsar and Go (2010), Hassani et al. (2011), Sharma (2013), Zafarmand and Hassani (2014),
Arnab et al. (2014), and Entezari et al. (2017).
An additional extension to thermo-piezo-magneto-mechanical stresses analyses of FG rota-

ting disks was presented by Ghorbanpour Arani (2010a, b). Dai et al. (2017) presented tempe-
rature, moisture, displacement and stress distributions of an exponentially graded piezoelectric
(EGP) rotating disk. Dai and Dai (2017) presented a rotating disk with variable thickness in
thermal environment made of an FG magneto-electro-elastic material (MEEM). In this article,
the problem of stresses and deformation of a rotating variable-thickness inhomogeneous and FG
annular disk is presented. Numerical results are investigated according to different profiles of the
annular disk. Two specific thickness variations namely power and exponential laws for thickness
variation are considered. A comparison between different cases is made and some conclusions
are presented.

2. Formulation of the problem

Here, the basic equations of elasticity are used (Mashat and Zenkour, 2014). The constitutive
equations are represented as

σr =
E

1− ν2

(

ν
u

r
+
du

dr

)

−
E

1− ν
αT

σθ =
E

1− ν2

(u

r
+ ν
du
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)

−
E

1− ν
αT

(2.1)

where u represents the radial displacement, σr and σθ denote radial and hoop stresses, T is tem-
perature distribution, E denotes Young’s modulus, ν denotes Poisson’s ratio and α represents
the thermal expansion coefficient. It is considered that thickness is a function of the radial coor-
dinate, that is h(r) represents variable-thickness of the rotating disk. So, the dynamic equation
of a rotating variable-thickness disk may be represented by

d

dr
(hrσr)− hσθ + hρω

2r2 = 0 (2.2)
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where ω represents angular velocity and ρ denotes material density. Assume that the material
of the rotating disk is isotropic with uniform Poisson’s ratio while the elastic modulus, density,
and thermal coefficient are all radially varying. Equation (2.2) with the help of Eq. (2.1) yields
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3. Various disk profiles

3.1. Thickness profiles

The present rotating disk is annular and made of a variable-thickness, single-layer of func-
tionally or exponentially graded material with the inner radius a and the outer one b. Two
thickness disk profiles are supposed here. In the first one, the thickness is varied with radius of
the disk according to the following power-law form

h(r) = h0
[

1− n
(r

b

)]k

(3.1)

where h0 denotes the thickness at the axis of the disk and n and k are dimensionless parameters.
The parameter n defines thickness at edge of the disk relative to h0 while the parameter k defines
the shape of the disk profile. The uniform-thickness disk is deduced when either n = 0 or k = 0
while linearly-decreasing thickness is deduced if k = 1. In addition, if k < 1 the disk profile is
convex while if k > 1 it is concave. Figure 1 illustrates the case of a convex disk with n = 0.415196
and k = 3. The dimensionless thickness h = h(r)/h0 is displayed in terms of dimensionless radius
r = r/b for a = 0.2m.

Fig. 1. Power disk profiles, n = 0.415196 and k = 3

The second thickness of the disk profile is considered to vary radially according to this
exponential form

h(r) = h0 exp
[

−n
(r

b

)k]

(3.2)

Also, in this case n defines thickness at edge of the disk and k determines the shape of the disk
profile. Figure 2 shows two plots of this disk profile in two cases: (a) n = 2 and k = 0.5 while
(b) n = 0.415196 and k = 3 for the same inner radius a.
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Fig. 2. Exponential disk profiles: (a) n = 2, k = 0.5, (b) n = 0.415196, k = 3

3.2. Material properties profiles

The material properties of the annular disk are considered to vary across the radial direction.
Young’s modulus E, thermal expansion coefficient α, and material density ρ are assumed to vary
according to the following simple power law

P (r) = P0
(r

b

)β

(3.3)

where P0 is the material property (E0, α0 and ρ0) at the outer surface of the disk and β denotes
the inhomogeneity parameter. The above formula means that the annular disk is inhomogeneous
with respect to its coefficients ρ, α, and E.
For the functionally graded (FG) annular disk, the property variation P (r) of the thermal

coefficient, density and modulus of elasticity across the radial direction is considered as (Ruhi
et al., 2005)

P (r) = Pa + (Pb − Pa)
(r − a

b− a

)β

(3.4)

where Pa and Pb denote the corresponding properties of the inner and outer surfaces of the
rotating disk. The grading index parameter β  0 represents the volume fraction exponent. The
above power law reflects a simple rule of mixture in terms of volume fraction of constituents,
and it is widely admitted form of property variation.

3.3. Temperature profiles

The temperature distribution across the radial direction is derived from heat conduction
equation

κ∇2T (r) + q(r) = 0 (3.5)

where ∇2 = (d2/dr2) + (1/r)(d/dr), κ denotes thermal conductivity, and q represents the heat
generation function. The temperature satisfies the following boundary conditions

T (r)
∣

∣

r=a
= T0

dT (r)

dr

∣

∣

r=b
= 0 (3.6)

in which T0 denotes the reference temperature. The internal energy generation within both
surfaces is given by the heat generating function

q(r) = −Q
(r − a

a

)(r − b

b

)

a ¬ r ¬ b (3.7)
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where Q represents a uniform rate of internal energy generation. So, Eq. (3.5) gets the solution

T (r) =
Qr2

144κab
[9(r2 + 4ab) − 16r(a+ b)] + c1 ln(r) + c2 (3.8)

in which c1 and c2 represent arbitrary integration constants obtained from conditions appeared
in Eq. (3.6) as

c1 =
Qb2

12κa
(b− 2a)

c2 =
Q

144κab
[a3(7a− 20b)− 12b3 ln(a)(b− 2a)] + T0

(3.9)

In addition to Eq. (3.8), one can use another simple and efficient form of temperature. That is

T (r) = Ta +
Tb − Ta

ln b
a

(ln r − ln a) (3.10)

4. Solution of the problem

It is known that it is difficult to get a general solution of the second-order differential equation
with variable coefficients as Eq. (2.3). A semi-analytical approach is presented here for this
purpose. The radial domain will be divided into some virtual sub-domains with thickness s(m)

as illustrated in Fig. 3. Evaluating the coefficients of Eq. (2.3) at r = r(m), which is said to be

Fig. 3. Dividing radial domain into some finite sub-domains

the mean radius of m-th division, and using them instead of variable coefficients one obtains

d2u(m)

dr2
+N

(m)
1

du(m)

dr
+N

(m)
2 u

(m) −N
(m)
3 = 0 (4.1)
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Now, Eq. (4.1) becomes a system of M -equations. So, it is easy to obtain the solution of Eq.
(4.1) as

u(m) = B
(m)
1 e

β1r +B
(m)
2 e

β2r +
N
(m)
3

N
(m)
2

(4.3)

where m represents the number of virtual sub-domains, and β1 and β2 denote roots of

β2 + N
(m)
1 β + N

(m)
2 = 0, and B

(m)
1 and B

(m)
2 denote uncharted constants for the m-th sub-

-domain. Indeed, the above solution is valid for

r(m) −
s(m)

2
¬ r ¬ r(m) +

s(m)

2
(4.4)

where r(m) and s(m) represent the mean radius and radial width ofm-th sub-domain, respectively.

The uncharted B
(m)
1 and B

(m)
2 can be derived by applying necessary conditions between each

two adjacent sub-domains. The continuity conditions at the interfaces may be expressed as

u(m)
∣

∣

r=r(m)+S
(m)

2

= u(m+1)
∣

∣

r=r(m+1)−S
(m+1)

2
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2

(4.5)

The continuity and boundary conditions yield a set of linear algebraic equations inB
(m)
1 and B

(m)
2

(m = 1, 2, . . . ,M). After getting B
(m)
1 and B

(m)
2 and using them in Eqs. (4.3), u

(m) are completely
determined. The accuracy of the results improves if the number of divisions is increasing.

5. Numerical results and discussion

Many examples for the analysis of inhomogeneous or FG rotating annular disks are illustrated
to discuss radial and hoop stresses, temperature and radial displacement. The following non-
-dimensional variables are fixed through numerical examples

{r, u} =
1

b
{r, u} T =

T

T0
(5.1)

while other non-dimensional forms of stresses will be given according to the case studied. Now,
we will discuss four examples to cover all the presented cases. In all cases studied, one can use
some values for the parameters as a = 0.2m, b = 1m, and ω = 100 s−1.
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5.1. Example 1

In this case, thickness, material properties, and temperature profiles are given according to
Eqs. (3.1), (3.3) and (3.10), respectively. For the thickness profile, the geometric parameters are
given by n = 0.415196 and k = 3. The mechanical boundary conditions are represented as

u
∣

∣

r=a
= 0 σr

∣

∣

r=b
= −p (5.2)

where p is the outer pressure. In this case, the dimensionless stresses are given by

σi =
σi
p

i = r, θ (5.3)

The elastic and thermal constants are assumed as: E0 = 390GNm
−2, ρ0 = 3.9Mgm

−3, ν = 0.25,
α0 = 7 · 10

−6K−1, Ta = 373K, Tb = 273K.

Fig. 4. Temperature distribution in an inhomogeneous rotating annular disk

The distribution of temperature is given in Fig. 4. The temperature, as expected, decreases
as the radial direction increases. The radial stress σr, hoop stress σθ and radial displacement u
are plotted in Figs. 5a,b,c. Different values of the inhomogeneity parameter β are considered.
Figure 5a shows that σr for different values of β at r = 1 is equal to −1, which satisfies the second
part of conditions appeared in Eq. (5.2). The radial stress σr increases as β decreases while it is
decreasing along the radial direction. Figure 5b plots the hoop stress σθ across the radial direction

Fig. 5. (a) Radial stress, (b) hoop stress and (c) radial displacement distribution of the inhomogeneous
rotating annular disk for different values of β

of the inhomogeneous annular disk. It is directly increasing to obtain its absolute maximum at
the outer edge of the disk except for β = 1. The value of β = 4 yields the smallest hoop stress at
the inner edge and greatest one at the outer edge. However, the value of β = 1 yields the greatest
hoop stress at the inner surface and the smallest one at the outer surface. Figure 5c plots the
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radial displacement distribution along the radial direction of the inhomogeneous annular disk.
The radial displacement u for different values of β at r = 0.2 is equal to zero, which satisfies
the first part of the boundary conditions given in Eq. (5.2). The radial displacement u increases
along the radial direction. Its maximum occurs at the outer edge for β = 1 only. However, this
position of its maximum may be moved to be nearer to the inner surface as β increases.

5.2. Example 2

Here, thickness, material properties, and temperature profiles are given according to Eqs.
(3.2), (3.3) and (3.10), respectively. The geometric parameters are taken as n = 0.415196 and
k = 3. However, the mechanical conditions at boundaries are represented as

σr
∣

∣

r=a
= −p σr

∣

∣

r=b
= 0 (5.4)

The results for such an inhomogeneous disk are illustrated in Figs. 6a,b,c. The non-
-dimensional forms for radial and hoop stresses appeared in Eq. (5.3) are repeated here. Fi-
gure 6a shows that σr for different values of β at r = 0.2 is equal to −1 and at r = 1 is equal
to 0 according to conditions in Eq. (5.4). The differences between radial stresses σr increase at
r/b = 0.5 with the occurrence of the absolute maximum value of σr. Figure 6b shows that σθ is
directly increasing to get its absolute maximum at the outer surface of the inhomogeneous disk,
except for β = 1. The value of β = 4 yields the smallest hoop stress at the inner edge and the
greatest hoop stress at the outer edge. However, β = 1 yields the greatest hoop stress at the
outer edge and the smallest hoop stress at the outer surface of disk. Figure 6c shows that u is
decreasing to assume its absolute minimum at the outer edge for β > 1. However, it increases
to get its absolute maximum at outer edge of the inhomogeneous disk.

Fig. 6. (a) Radial stress, (b) hoop stress and (c) radial displacement distribution in the inhomogeneous
rotating annular disk for different values of β

5.3. Example 3

The inner surface of the FG rotating annular disk is traction free while the outer one is under
constant pressure. The mechanical boundary conditions are given in the form

σr
∣

∣

r=a
= 0 σr

∣

∣

r=b
= −p (5.5)

where p is the outer pressure. The dimensionless stresses are also given as in Eq. (5.3). The
thickness profile is given according to Eq. (3.2) with geometric parameters n = 2 and k = 0.5.
The material properties profile is given according to Eq. (3.4) with ν = 0.3 and Ea = 390GNm

−2,
Eb = 200GNm

−2, ρa = 3.9Mgm
−3, ρb = 7.7Mgm

−3, αa = 7 · 10
−6K−1, αb = 11 · 10

−6K−1.
The temperature profile is also given according to Eq. (3.10) with Ta = 373K and Tb = 273K.

The stresses and radial displacement are illustrated in Figs. 7a,b,c. From these figures, all stresses



Thermoelastic stresses in functionally graded rotating annular disks... 1037

and displacement increase with the decrease of the gradient parameter β. Figure 7a plots the
radial stress distribution along the radial direction of the FG rotating disk. It is shown that σr
for various values of β at r = 0.2 is equal to 0 and at r = 1 is equal to −1 according to conditions
presented in Eq. (5.5). The differences between radial stresses σr increase near to the middle
plane (far from internal and external boundaries). Figure 7b plots hoop stress σθ along the
radial direction. It is directly decreasing from its absolute maximum at the inner edge to get its
absolute minimum at outer edge of the disk. Figure 7c shows that u is no longer decreasing and
has its absolute minimum near the inner surface of the disk. Then, the radial displacement u is
directly increasing to get its absolute maximum near the outer edge of the FG rotating annular
disk.

Fig. 7. (a) Radial stress, (b) hoop stress and (c) radial displacement distribution in the FG rotating
annular disk for different values of β

5.4. Example 4

In this case, we take the same assumption of Example 3 except for temperature. It is given ac-
cording to Eq. (3.8) with the help of Eq. (3.9). The uniform rate of internal energy generation Q,
the thermal conductivity κ and the reference initial temperature T0 are given, respectively, by
Q = 12Wm−3, κ = 0.35W(Km)−1, Ta = 273K.

The mechanical boundary conditions are given by

σr
∣

∣

r=a
= −p1 σr

∣

∣

r=b
= −p2 (5.6)

where p2 and p1 = 0.6p2 are outer and inner pressures, respectively. The dimensionless stresses
are given by

σi =
σi
p2

i = r, θ (5.7)

The dimensionless temperature distribution is plotted in Fig. 8. In addition, the radial and
hoop stresses and radial displacement are illustrated in Figs. 9a,b,c. Figure 9a shows the radial
stress distribution along the radial direction of the FG rotating disk. It is obvious that σr for
various values of β at r = 0.2 is equal to −0.6 and at r = 1 is equal to −1, according to the
conditions in Eq. (5.6). The radial stress σr has its absolute maximum value near the middle
plane (far from internal and external boundaries). Figure 9b plots hoop stress σθ along the radial
direction. It is directly decreasing from its absolute maximum at the inner edge to get its absolute
minimum at the outer edge of the disk. Figure 9c shows that u is no longer decreasing and has
its absolute minimum near the inner edge of the disk. Then, it is directly increasing to get its
absolute maximum near the outer surface. It is to be noted that all stresses and displacement
increase as the gradient parameter β decreases.
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Fig. 8. Temperature distribution in the FG rotating annular disk

Fig. 9. (a) Radial stress, (b) hoop stress and (c) radial displacement distribution in the FG rotating
annular disk for different values of β

6. Concluding remarks

• In this article, semi-analytical solutions for stress distributions in inhomogeneous and FG
variable-thickness rotating annular disks are investigated.

• The semi-analytical method is improved for the thermomechanical problem where stresses
are produced based on different mechanical loading conditions.

• A selection of proper values of the graded index β and suitable loads helps engineers to
design FG rotating disks that can meet some special requirements.

• The main conclusion is that the semi-analytical solution is an accurate and reliable, and
the method is simple and effective.
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